
Handling
Technical Debt
with OutSystems
TECHNICAL WHITE PAPER



Introduction �������������������������������������������������������������������������������������������������������������������������������������������������������������3

OutSystems Versus Technical Debt ������������������������������������������������������������������������������������������4

OutSystems From Development to Deployment ���������������������������������������������������5
TrueChange™ ������������������������������������������������������������������������������������������������������������������������������������������������������������ 5
Compare and Merge ������������������������������������������������������������������������������������������������������������������������������������������ 7

Architecture Dashboard ��������������������������������������������������������������������������������������������������������������������������9
The Architecture Canvas ����������������������������������������������������������������������������������������������������������������������������� 10
Architecture Canvas Validation �������������������������������������������������������������������������������������������������������������12
Using the Architecture Dashboard ����������������������������������������������������������������������������������������������������13

Conclusion ���������������������������������������������������������������������������������������������������������������������������������������������������������������16

Appendix: Architecture Design for Architecture Dashboard ��������������17
Validation Rules ����������������������������������������������������������������������������������������������������������������������������������������������������17
No Upward References �������������������������������������������������������������������������������������������������������������������������������17
No Side References Between End Users ������������������������������������������������������������������������������������18
No circular references ���������������������������������������������������������������������������������������������������������������������������������18

Application Composition Rules ��������������������������������������������������������������������������������������������������������������19
No Upward References in Applications �������������������������������������������������������������������������������������� 20
Clarify Ownership ������������������������������������������������������������������������������������������������������������������������������������������� 22
Avoid Mixing Sponsors������������������������������������������������������������������������������������������������������������������������������� 23

Contents

2

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Introduction
Since Ward Cunningham coined the phrase “technical debt” in 1992, it has 
sometimes been taken as an excuse for releasing quick-and-dirty code in 
the interests of development speed. Instead, it is better understood as an 
explanation for why it is sometimes OK to get a workable solution out the 
door—with a commitment to find an optimal one as soon as possible, and, in 
this way, repay a technical debt.

However it is defined, taking on technical debt plays an important part in 
achieving excellence—as long as it is redeemed by bringing everything up to 
spec before it leads to a cascade of future problems. Like the financial world, 
from which this metaphor is drawn, ignoring long-term debt ultimately leads to 
overburdened, bankrupt enterprise software.

Even the best code has room for improvement—but, before enhancements can 
be tackled for the next release, disruptive technology may mature, markets may 
pivot, and additional user needs may be identified. Paying down a large backlog 
of technical debt at the beginning of a development cycle may block the quick 
response required to deal with new opportunities and challenges.

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

33

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



OutSystems Versus Technical Debt
Applications built with OutSystems rely on standard architectures and 
frameworks. They don’t require proprietary components, runtime engines, or 
interpreters—so technical debt is effectively limited before development even 
begins.

Software deployment using classical programming methods typically comprises 
modifying database files, pre-processing code, compiling it, assembling it, and 
then linking the result to all of its function calls. Bugs in any step may only be 
revealed as the result of a failed compilation, which triggers a manual code 
review for troubleshooting.

OutSystems orchestrates the entire deployment process using a combination 
of automation, AI, and analytics to identify architecture errors, faulty logic, and 
broken dependencies—during development, in real time. OutSystems preempts 
failed compilations by either applying corrective measures automatically or 
directing the developer to the source of the error—along with a suggestion 
about how to fix it. Modules can only be published when it will function correctly.

Correct functioning, however, does not necessarily mean efficient functioning. 
While a short-term solution may solve the immediate problem, it may also leave 
a technical debt, in the form of an app that is difficult to maintain and costly to 
change. The OutSystems Architecture Dashboard provides a high-level analysis 
of your app, marks areas for improvement, and facilitates unhindered growth.

This paper discusses how OutSystems helps reduce technical debt during 
development and assists in building a best-practices architecture to efficiently 
deal with it in the future.

4

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



OutSystems From Development 
to Deployment
OutSystems promotes and encourages the use of Agile methodologies, so it is 
extremely important to allow developers to be highly productive and efficient—
not only when creating applications but also when changing them to adapt to 
new business needs.

Service Studio, the Outsystems visual development environment, gives 
developers the tools they need to achieve these goals.

TrueChange™
When a developer makes changes to a model, the TrueChange™ engine 
provides immediate feedback on its impact. By inspecting the model for 
consistency—a method similar to syntactic and semantic analysis used in 
classical coding—TrueChange checks if the model is well-formed and well-typed, 
and, at the same time, detects many other problems, including those that may 
lead to performance issues, marking them accordingly for followup.

5

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview


In the image below TrueChange has identified two errors, noted three unused 
arguments and given a warning about a security concern. Clicking links in the 
TrueChange tab brings the developer to the issue to be corrected. 1-Click Publish 
remains disabled until all errors have been resolved.

Developers may also debug applications by setting breakpoints at specific 
points in a module and then running the logic step-by-step to find any issues in 
logic design.

6

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

https://success.outsystems.com/Documentation/11/Developing_an_Application/Troubleshooting_Applications/Debugging_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Troubleshooting_Applications/Debugging_Applications/Breakpoints


The Debugger tab shows app information, including variable and runtime 
values, along with current debugging context (current thread, event name, UI 
flow, screen and action). The developer can use the Debugger Toolbar and the 
menu to track down and correct the problems.

Compare and Merge
OutSystems uses a versioning system that labels modules with an incremental 
version number upon each successful publish. In environments where many 
developers work on the same module at the same time, 1-Click Publish first 
initiates a comparison of the new code with the existing code before going 
forward.

7

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Compare and Merge first tries to merge new code with the changes that other 
developers published in the meantime. If automatic integration is not possible, 
the developer can review the results in the Compare and Merge window, as 
seen in the image below. Drilling down into conflicts, shown in red, displays the 
changes between the versions. Once the conflicts have been reconciled and all 
of the merges approved, the app can then be published.

8

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

https://success.outsystems.com/Documentation/11/Developing_an_Application/Merge_the_Work


Architecture Dashboard
Enterprises have moved away from legacy monolith systems—where a single 
stack contains all of the functionality of an application—so they can more quickly 
answer customer needs, respond to changing operational requirements, and 
meet business goals and objectives. 

Breaking the monolith means breaking out functionality and services so they can 
be modified independently. This allows for the frequent release of new features 
and the ability to roll out updates as soon as vulnerabilities are discovered.

But this is only one part of the task. These services must continue to work 
together, and some of the pieces broken off from the original monolith may 
require ever greater effort as time goes on to keep the app running, turning into 
mini-monoliths themselves. This is technical debt par excellence: in down-to-
earth developer lingo, spaghetti architecture.

Among the main issues of this technical debt include the following:

• Poor service abstraction: Services for core business concepts are not 
correctly isolated and abstracted. Business rules are spread over different 
systems, making them hard to reuse, and code reuse has very little structure.

• Unmanageable dependencies: Components of the system are not correctly 
isolated from each other, so updating or replacing a system has a snowball 
effect on other systems.

• Inflexible, slow-moving legacy components: Legacy systems can be 
complex and inflexible, and may include obsolete technology. Adapting such 
systems to business changes is slow and difficult. And the accumulation 
of core information and system dependencies over time can hinder any 
replacement.

9

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



A well-considered application architecture provides patterns and techniques 
for design and development: a roadmap and best practices for building a well-
structured app. Beyond that, application architecture helps drive consensus 
among all players, supports planning, facilitates change, and manages 
complexity, all of which reduces risks and successfully manages technical debt.

It is fundamental to align architecture with business goals: to translate business 
needs and concepts into an architecture that allows developers to evolve and 
scale up with business, while ensuring independent life cycles between different 
lines of business.

While developing a conceptual design for application architecture is beyond 
the scope of the article, information about this subject can be found in the links 
below:

• Designing the Architecture of Your OutSystems Applications

• Web and Mobile Architecture with Architecture Dashboard (presentation)

• Integration Patterns for Core Services Abstraction

• Domains and Services Architecture

The Architecture Canvas
The architecture canvas, as used by the OutSystems Architecture Dashboard, 
is a multi-layer framework that provides a systematic approach to speed up 
architecture design. It promotes the correct abstraction of reusable services 
and components, maximizes independent life cycles among all the parts of your 
architecture by setting the correct mutual dependencies, and minimizes the 
impact of changes, making it much easier to maintain and evolve your apps.

10

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

https://success.outsystems.com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_the_Architecture_of_Your_OutSystems_Applications
https://www.outsystems.com/events/tech-talks/architecture-dashboard/
https://success.outsystems.com/Support/Enterprise_Customers/Maintenance_and_Operations/Designing_the_Architecture_of_Your_OutSystems_Applications/05_Integration_Patterns_for_Core_Services_Abstraction
https://www.outsystems.com/learn/lesson/1696/domains-and-services-architecture
https://success.outsystems.com/Documentation/Architecture_Dashboard/Introduction_to_Architecture_Dashboard


All modules are sorted into layers as follows:

• Foundation layer

⸰ Business agnostic, reusable, non-functional modules

⸰ Connections to external systems, such as SAP and external databases

⸰ Framework extensions, such as libraries, reusable UI patterns and themes

⸰ Non functional requirements, such as auditing

• Core layer

⸰ Systems agnostic (modules on the foundation layer abstract integration 
details)

⸰ Reusable services around business concepts

⸰ Business entities, business rules, business transactions, business widgets

⸰ Recommendations for architects:

⸋ No front-end screens

⸋ Read-only entities (write via APIs)

11

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



• End-user layer (to support user interaction)

⸰ User interfaces and processes, reusing core and library services to 
implement the user journey

⸰ Independent end-user applications (to ensure lifecycle independence)

⸰ Recommendations for architects:

⸋ No business logic

⸋ No core entities

The figure below illustrates how an OutSystems app with a well-formed 
architecture integrates with a typical enterprise IT ecosystem.

Architecture Canvas Validation
Architecture Dashboard is the OutSystems technical debt monitoring 
tool. Powered by AIFusion™ and CodeDNA, it automatically performs code 
and runtime analysis before recommending solutions for improving the 
performance, security, architecture, and user experience of applications.

A guided refactoring capability powered by the CodeDNA engine identifies all 
of the opportunities for refactoring and code duplication across the factory, 
pointing architects and teams to the right points to make these improvements. 
Code duplication is one of the top technical debt issues. The guided refactoring 

12

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

https://success.outsystems.com/Documentation/Architecture_Dashboard/Introduction_to_Architecture_Dashboard
https://www.outsystems.com/evaluation-guide/what-is-aifusion/
https://www.outsystems.com/blog/posts/ai-software-development/


capability is unique in our industry. It uses AI to detect, with incredible accuracy, 
where teams should focus on refactoring and ranks them by importance.

Architecture Dashboard uses the following validation rules in order to evaluate 
the architecture of your applications:

• No upward references

• No side references among end users

• No circular references between the foundation and core layers

For an in-depth discussion of these rules for architecture design see the 
Architecture design appendix below.

Using the Architecture Dashboard
The Architecture Dashboard is designed for:

• Architects who need to understand how the architecture evolves

• Team leads who need to make sure that there are no problems with the 
architecture

• Developers who need to make sure their code adheres to best practices and 
doesn’t introduce any performance or security issues

13

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

https://success.outsystems.com/Documentation/Architecture_Dashboard/Getting_started_with_Architecture_Dashboard/Getting_started_as_an_architect
https://success.outsystems.com/Documentation/Architecture_Dashboard/Getting_started_with_Architecture_Dashboard/Getting_started_as_a_team_lead
https://success.outsystems.com/Documentation/Architecture_Dashboard/Getting_started_with_Architecture_Dashboard/Getting_started_as_a_developer


Architecture Dashboard provides an integrated, bird’s eye view of technical debt 
across an entire portfolio of applications and the interdependencies between 
modules in the developers’ environment. The OutSystems AI engine classifies 
every architecture module into its correct class, automating architecture 
discovery. A heat map visualization of mild-to-severe problem areas helps IT 
leaders identify problem areas quickly and to prioritize them accordingly.

Clicking an app shows its dependencies and technical debt with other applications.

14

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Double-clicking one of the modules allows you to drill down into any identified 
issues, which are grouped by Architecture, Performance, Maintainability and 
Security, so you can quickly understand what is going on in that particular area.

Architecture Dashboard explains the impact of this finding and gives a 
recommendation about how to fix it. In the screen below clicking the duplicated 
code pattern shows three instances of where duplicated code is being used, 
along with links to Service Center where this code can be found.

15

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Conclusion
OutSystems applications rely only on standard architectures and frameworks and 
require no proprietary components, runtime engines, or interpreters. For these 
reasons technical debt is effectively limited before development even begins.

When developers write new code, or make changes to existing code, OutSystems 
provides immediate feedback on its impact. Corrective measures are applied 
automatically if possible. Otherwise the source of the error is linked, along with 
suggestions about how to fix it. This eliminates compilation errors, since an 
OutSystems app cannot be published unless they function correctly.

Correct functioning, however, does not necessarily mean efficient functioning. 
While a short-term solution may solve the immediate problem, it may also leave 
a technical debt, in the form of an app that is difficult to maintain and costly to 
change. The OutSystems Architecture Dashboard provides a high level analysis of 
your app, highlighting areas for improvement, and facilitates unhindered growth.

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM

16



Appendix: Architecture Design for 
Architecture Dashboard
This appendix contains a detailed discussion of rules for canvas validation and 
application composition.

Validation Rules
The following validation rules are used for correct architecture design of all of 
the modules in your development environment.

No Upward References
An upward reference tends to create a cluster where any two modules, directly 
or indirectly, have a circular dependency.

In the example above, foundation module X—by definition non-functional—
should not depend on functional or end-user modules.

Another unexpected effect of this upward reference from foundation module X 
is that end-user 2 (EU2), by consuming core module B, makes it dependent on 
EU1’s cluster. Aside from giving ER2’s runtime an unnecessarily large footprint, it 
will also be impacted by changes made in modules which have no relevance to 
its function.

17

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



No Side References Between End Users
End-user modules should not provide reusable services, as seen in the figure 
below. The side reference between EU1 and EU2 means that their lifecycles are 
linked and they can only be released at the same time. 

Maintaining correct isolation between end-user modules give them independent 
lifecycles with a versioning pace set by their different sponsors or project teams.

No Circular References
A cycle is always undesirable, since it brings unexpected impacts and hard-to-
manage code. A cycle between modules indicates that the concepts are not 
correctly abstracted. 

18

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Application Composition Rules
A business application is generally understood as a computer program used to 
perform one or more business functions. In the context of architecture design 
in OutSystems, however, an application is considered a set of modules that 
constitutes a minimal deployment unit.

So, in addition to an end-user application, which fits the common definition for 
a business app, developers also deploy foundation applications, composed of a 
set of modules other apps can use for foundation services, and, in a like manner, 
core apps to supply core services.

The type of application is defined by the modules in the topmost row, as can be 
seen in the figure below:

19

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Just as modules must be designed using the validation rules, so composing 
applications from these well-formed modules must be layered in the same way. 

• No upward references

• No side references between end users

• No circular references

No Upward References in Applications
The example below shows two end-user applications. Both the first and second 
project are well formed. However, the third project, which combines both of 
them together, has an unacceptable upward reference in its design.

20

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Because end-user applications should not provide services to other applications, 
this validation error is corrected by creating a new core application that isolates 
the common service to which Application 1 and Application 2 connect, as seen 
in the figure below:

21

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Clarify Ownership
Having more than one owner for an application with several modules results in 
complex deployment management, as accountability for what has been changed 
becomes unclear. The top portion of the figure below illustrates the difficulty in 
determining who is responsible for what.

After splitting the common application into two apps ownership is now clearly 
defined.

22

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM



Avoid Mixing Sponsors
For the same reason, avoid mixing sponsors. As an example, consider a portal 
that allows executing simulations over different insurance lines of business. 
If all LOBs are under the same application, none of them can be released 
independently, meaning that the slowest LOB dictates the release cycle.

The right side of the figure shows that creating independent applications per 
line of business—and a portal application with a fourth sponsor—allows each 
LOB to determine its own pace of delivery.

23

TECHNICAL WHITE PAPER | INTEGRATING OUTSYSTEMS WITH YOUR ECOSYSTEM


	Introduction
	OutSystems Versus Technical Debt
	OutSystems From Development to Deployment
	TrueChange™
	Compare and Merge
	Architecture Dashboard
	The Architecture Canvas
	Architecture Canvas Validation
	Using the Architecture Dashboard
	Conclusion
	Appendix: Architecture Design for Architecture Dashboard
	Validation rules
	No Upward References
	No Side References Between End Users
	No circular references
	Application Composition Rules
	No Upward References in Applications
	Clarify Ownership
	Avoid Mixing Sponsors



