802.11ax Wi-Fi6Smart Guide

Improved Density with OFDMA Scheduling

Wireshark Filter for OFDMA Trigger Frame

 IEEE 802.11 Trigger, Flags: Type/Subtype: Trigger (0x0012) Frame Control Field: 0x2400 Wireshark filter = Wlan.fc eq 0x2400 ▼User Info • User Info: 0x5020350007

Target Wake Time adds ability to schedule wakeup times for stations. This enables clients to sleep longer and extends battery life.

Comparing 802.11ac and 802.11ax

Feature	802.11ac	802.11ax	Benefit				
OFDMA	N	Y	Improves RF efficiency by centralizing scheduling, reducing contention				
1024-QAM	N (256-QAM)	Y	Improves data rate for clients near AP with high SNR				
MU-MIMO	Y Downlink	Y Uplink + Downlink	Supports higher density; group size increased from 4 to 8 users				
BSS Coloring	N	Y	Adds spatial reuse for better efficiency in dense networks				
Target Wake Time (TWT)	N	Y	Reduces power usage and contention; important for low-power IoT devices				
Spatial Streams	4	4-8	When combined with MU-MIMO, throughput is improved with more available streams				
Transmission Fragmentation	Y Static	Y Dynamic	This enables improved scheduling efficiency and reduces overhead				
Carrier Spacing	312.5 kHz	78.125 kHz	Boosts performance by reducing overhead/spacing				

802.11ax Rate Set Per Stream Modulation and coding schemes for single spatial stream

MCS Index ^ª	Modulation Type	Coding Rate	Data Rate (in Mb/s) ^{b, d}						
			20 MHz Channels		40 MHz Channels		80 MHz Channels		
			1600 ns Gl ^c	800 ns GI	1600 ns GI	800 ns GI	1600 ns GI	800 ns GI	
0	BPSK	1/2	8.1	8.6	16.3	17.2	34	36	
1	QPSK	1/2	16.3	17.2	32.5	34.4	68.1	72.1	
2	QPSK	3/4	24.4	25.8	48.8	51.6	102.1	108.1	
3	16-QAM	1/2	32.5	34.4	65	68.8	136.1	144.1	
4	16-QAM	3/4	48.8	51.6	97.5	103.2	204.2	216.2	
5	64-QAM	2/3	65	68.8	130	137.6	272.2	288.2	
6	64-QAM	3/4	73.1	77.4	146.3	154.9	306.3	324.3	
7	64-QAM	5/6	81.3	86	162.5	172.1	340.3	360.3	
8	256-QAM	3/4	97.5	103.2	195	206.5	408.3	432.4	
9	256-QAM	5/6	108.3	114.7	216.7	229.4	453.7	480.4	
10	1024-QAM	3/4	121.9	129	243.8	258.1	510.4	540.4	
11	1024-QAM	5/6	135.4	143.4	270.8	286.8	567.1	600.5	

Notes: a. MCS 9 is not applicable to all channel width/spatial stream combinations. b. A second stream doubles the theoretical data rate, a third one triples it, etc. c. GI stands for the guard interval. d. 3200 ns GI is also supported.

Minimizes Co-Channel Interference with Coloring

Copyright © 2019 Juniper Networks. All Rights reserved. Mist, Mist Systems and the Mist logo are trademarks of Juniper Networks, Inc. in the United States and other countries. This product is protected by U.S. and international copyright and in

Innovation: "Al for AX"

Due to the complexity of 802.11ax, it is even more critical that you leverage AI to automate and optimize your network. You should look to your vendor to optimize the following key areas with AI:

- Intelligent load balancing between radios/bands
- Service levels that monitor and enforce orthogonal frequency-division multiple access (OFDMA) subcarrier assignments
- Basic Service Set (BSS) coloring assignments for highdensity Wi-Fi environments
- Sticky client prevention using AI-driven algorithms

Boosting Performance with 1024-QAM

Extending MU-MIMO for Upstream Traffic

MU-MIMO (multi-user multi input multi output) leverages bandsteering and multiple antennas to be able to transmit/ receive from multiple clients at the same time.

Learn More: www.mist.com/wi-fi-6